2020
DOI: 10.48550/arxiv.2004.03217
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Finding polynomial roots by dynamical systems -- a case study

Abstract: We investigate two well known dynamical systems that are designed to find roots of univariate polynomials by iteration: the methods known by Newton and by Ehrlich-Aberth. Both are known to have found all roots of high degree polynomials with good complexity. Our goal is to determine in which cases which of the two algorithms is more efficient. We come to the conclusion that Newton is faster when the polynomials are given by recursion so they can be evaluated in logarithmic time with respect to the degree, or w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?