Sharing information and resources on the Internet has become an important activity for education. The use of ubiquitous devices makes it possible for learning participants to be engaged in an open and connected social environment, and also allows the learning activities to be performed at any time and any place. In this study, the discovery of correlation among shared resources is concentrated. A hypothetical scenario is considered that the information, such as photos and thoughts, is applicable to be shared with implicit context (i.e., geographical information) by learners through a practical implementation, PadSCORM, on a mobile device. Two major contributions are achieved. First, the correlations among resources are determined through usage experiences mining and geographical information adjustment. It then assists learners in filtering out redundant information by highlighting the significance of resources. Second, an intelligent searching algorithm is proposed to visualize adaptive routes to facilitate search process and to enrich the learning activity. The empirical experiments revealing the feasibility and performance (e.g., accuracy and effectiveness) are conducted in the universities in North Taiwan.Social network analysis concentrates on the discovery of implicit correlation via the explicit exchange of resources among participants. The participant, including the human user and/or object,