Consider planning a trip in a train network. In contrast to, say, a road network, the edges are temporal, i.e., they are only available at certain times. Another important difficulty is that trains, unfortunately, sometimes get delayed. This is especially bad if it causes one to miss subsequent trains. The best way to prepare against this is to have a connection that is robust to some number of (small) delays. An important factor in determining the robustness of a connection is how far in advance delays are announced. We give polynomial-time algorithms for the two extreme cases: delays known before departure and delays occurring without prior warning (the latter leading to a two-player game scenario). Interestingly, in the latter case, we show that the problem becomes PSPACE-complete if the itinerary is demanded to be a path.
ACM Subject ClassificationTheory of computation → Graph algorithms analysis; Theory of computation → Problems, reductions and completeness; Mathematics of computing → Discrete mathematics Keywords and phrases Paths and walks in temporal graphs, static expansions of temporal graphs, two-player games, flow computations, dynamic programming, PSPACE-completeness