2015 Annual IEEE India Conference (INDICON) 2015
DOI: 10.1109/indicon.2015.7443226
|View full text |Cite
|
Sign up to set email alerts
|

Finding the most informational friends in a Social Network based Recommender System

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…The influence exerted by these two countries can be explained in terms of the technological development in communication among users, as mobile devices can achieve a high ratio of delivery of information. Moreover, mobile devices are fairly easy to use and offer opportunities in various domains such as learning, online shopping, geo sharing, and gaming, contributing to their high performance in mobile-based recommendations [74].…”
Section: Field-normalized Citation Score (Ncsf) Of Smrs Field Categor...mentioning
confidence: 99%
“…The influence exerted by these two countries can be explained in terms of the technological development in communication among users, as mobile devices can achieve a high ratio of delivery of information. Moreover, mobile devices are fairly easy to use and offer opportunities in various domains such as learning, online shopping, geo sharing, and gaming, contributing to their high performance in mobile-based recommendations [74].…”
Section: Field-normalized Citation Score (Ncsf) Of Smrs Field Categor...mentioning
confidence: 99%
“…Com a prevalência das redes sociais, dispositivos móveis e sistemas orientado a serviços de grande escala, tem-se experimentado a geração de enormes quantidades de dados, que por sua vez sobrecarrega usuários com grande volume de informações, dificultando encontrar serviços que atendam suas preferências (Almohsen and Al-Jobori, 2015;Deng et al, 2014). Como resultado, Sistemas de Recomendação (RS, Recommender Systems) têm um papel cada vez mais importante, na medida que lidam com a sobrecarga de serviços/produtos, sugerindo os mais adequados e ainda não adquiridos pelos usuários, mas que poderiam ser considerados altamente relevantes para eles (Deng et al, 2014;Maniktala et al, 2016).…”
Section: Introductionunclassified