Accurately understanding the stand composition of shelter forests is essential for the construction and benefit evaluation of shelter forest projects. This study explores classification methods for dominant tree species in shelter forests using UAV-derived RGB, hyperspectral, and LiDAR data. It also investigates the impact of individual tree crown (ITC) delineation accuracy, crown morphological parameters, and various data sources and classifiers. First, as a result of the overlap and complex structure of tree crowns in shelterbelt forests, existing ITC delineation methods often lead to over-segmentation or segmentation errors. To address this challenge, we propose a watershed and multi-feature-controlled spectral clustering (WMF-SCS) algorithm for ITC delineation based on UAV RGB and LiDAR data, which offers clearer and more reliable classification objects, features, and training data for tree species classification. Second, spectral, texture, structural, and crown morphological parameters were extracted using UAV hyperspectral and LiDAR data combined with ITC delineation results. Twenty-one classification images were constructed using RF, SVM, MLP, and SAMME for tree species classification. The results show that (1) the proposed WMF-SCS algorithm demonstrates significant performance in ITC delineation in complex mixed forest scenarios (Precision = 0.88, Recall = 0.87, F1-Score = 0.87), resulting in a 1.85% increase in overall classification accuracy; (2) the inclusion of crown morphological parameters derived from LiDAR data improves the overall accuracy of the random forest classifier by 5.82%; (3) compared to using LiDAR or hyperspectral data alone, the classification accuracy using multi-source data improves by an average of 7.94% and 7.52%, respectively; (4) the random forest classifier combined with multi-source data achieves the highest classification accuracy and consistency (OA = 90.70%, Kappa = 0.8747).