2021
DOI: 10.48550/arxiv.2107.09980
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Fine-Grained Causality Extraction From Natural Language Requirements Using Recursive Neural Tensor Networks

Abstract: Causal relations (e.g., If A, then B) are prevalent in functional requirements. For various applications of AI4RE, e.g., the automatic derivation of suitable test cases from requirements, automatically extracting such causal statements are a basic necessity. [Problem:] We lack an approach that is able to extract causal relations from natural language requirements in fine-grained form. Specifically, existing approaches do not consider the combinatorics between causes and effects. They also do not allow to split… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?