Background: Recent improvements in fixed acoustic monitoring receivers allow the tracking of individual aquatic animals over long periods of time with regular fine-scale positions. The VEMCO Positioning System (VPS) is now widely used, but various methodological issues remain to be clarified. The aim of this study was to analyze the spatial distribution of the probability of location and the positioning error over the entire surface of a hydropower reservoir, prior to analyzing fish behavior. Findings: Filtering the data set by the horizontal position error (HPE) significantly reduced the positioning error. Retaining only the positions with an HPE less than 15 retained 79% of VPS positions and decreased the positioning error by 33% (mean = 3.3 m, SD = 3.3 m). A higher probability of location was observed inside than outside the receiver array (44% and 36%, respectively). Moreover, the positioning error significantly differed inside (n = 243, mean = 2.4 m, SD = 2.1 m) and outside (n = 253, mean = 4.2 m, SD = 4.0 m) the receiver array (P < 0.001). Finally, the lowest positioning errors were detected in the area with the highest receiver density. Conclusions: The VPS measures fish positioning in a reservoir, under suitable conditions, with satisfactory accuracy. We showed that the probability of location and the positioning error differed spatially in accordance with previous results in other conditions. Consequently, these analyses are recommended as a prerequisite to further spatial analyses using VPS-derived data.