Sendai virus nucleocapsids have been observed by electron microscopy to coexist in three different helical pitch conformations, 5.3, 6.8, and 37.5 nm. The 5.3and 6.8-nm conformations are present both in uranyl acetate negatively stained preparations and in tantalum-tungsten metal-shadowed preparations, whereas the 37.5-nm conformation, which has not been previously reported, is present only in the shadowed preparations. The 5.3-nm pitch conformation appears to be a mixture of two discrete structural states, with a small difference in the twist of the structure between the two. We have used image reconstruction techniques on an averaged data set from eight negatively stained nucleocapsids to produce a three-dimensional reconstruction at 2.4-nm resolution of the structure in one of the 5.3-nm pitch states. There are 13.07 nucleocapsid protein (NP) subunits in each turn of the helix in this state. The helical repeat is 79.5 nm, containing 196 subunits in 15 turns of the left-handed 5.3-nm helix. The arrangement of subunits produces a 5.0-nm-diameter hollow core which forms an internal helical groove. The RNA accounts for about 3% of the mass of the nucleocapsid, and so its location is not conspicuous in the reconstruction. Because the RNA remains associated with the NP subunits during mRNA transcription and genome replication, structural transitions in the nucleocapsid may determine the accessibility of the genome to polymerases. Alternatively, the large hollow core and internal helical groove we have reconstructed may allow access to the RNA even in the tightly coiled 5.3-nm pitch conformation.