2021
DOI: 10.1007/978-3-030-72240-1_38
|View full text |Cite
|
Sign up to set email alerts
|

Fine-Tuning BERT for COVID-19 Domain Ad-Hoc IR by Using Pseudo-qrels

Abstract: This work analyzes the feasibility of training a neural retrieval system for a collection of scientific papers about COVID-19 using pseudo-qrels extracted from the collection. We propose a method for generating pseudo-qrels that exploits two characteristics present in scientific articles: a) the relationship between title and abstract, and b) the relationship between articles through sentences containing citations. Through these signals we generate pseudo-queries and their respective pseudo-positive (relevant … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?