2024
DOI: 10.1609/aaai.v38i8.28777
|View full text |Cite
|
Sign up to set email alerts
|

Fine-Tuning Large Language Model Based Explainable Recommendation with Explainable Quality Reward

Mengyuan Yang,
Mengying Zhu,
Yan Wang
et al.

Abstract: Large language model-based explainable recommendation (LLM-based ER) systems can provide remarkable human-like explanations and have widely received attention from researchers. However, the original LLM-based ER systems face three low-quality problems in their generated explanations, i.e., lack of personalization, inconsistency, and questionable explanation data. To address these problems, we propose a novel LLM-based ER model denoted as LLM2ER to serve as a backbone and devise two innovative explainable quali… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 22 publications
0
0
0
Order By: Relevance