2010
DOI: 10.1016/j.engappai.2009.11.005
|View full text |Cite
|
Sign up to set email alerts
|

Fingerprint matching using multi-dimensional ANN

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2012
2012
2021
2021

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 14 publications
0
5
0
1
Order By: Relevance
“…Others use minutiae that join devices; and others are a bit more unique, including things like moiré stripe patterns and ultrasound properties. A wider range of fingerprint devices is available than any other biometric technology [6]. Fingerprint systems translate illuminated fingerprint images into digital code for other software such as registration (fingerprint registration) and verification (authentication or verification of registered users).…”
Section: Fingerprintmentioning
confidence: 99%
“…Others use minutiae that join devices; and others are a bit more unique, including things like moiré stripe patterns and ultrasound properties. A wider range of fingerprint devices is available than any other biometric technology [6]. Fingerprint systems translate illuminated fingerprint images into digital code for other software such as registration (fingerprint registration) and verification (authentication or verification of registered users).…”
Section: Fingerprintmentioning
confidence: 99%
“…Similarly, TBCC performs correlations among aligned minutiae points, therefore, the likelihood of redundant correlations decreases causing reduction in error and that's why FNMR and FMR decrease and A is increased as shown in receiver operating characteristic curve (ROC) in Figures 6a-6d, respectively. Moreover, for comparison different algorithms such as hierarchical hough transform (HHT) [22], multilevel structural technique for fingerprint recognition (MSFR) [23] and multi-dimensional artificial neural network (MDANN) [24] based algorithms are implemented and their results are illustrated in Figures 6a-6d, respectively.…”
Section: Tbcc Based Implementationmentioning
confidence: 99%
“…Görüntüdeki insan faktörü ve doğrudan tanıma ile ilgili olmayan, ama bütün olarak ele alınabilen diğer faktörler (ışıklandırma, bakış açısı ve pikseller gibi) olarak 2 aşamada değerlendirdikleri modeli, benzer şekli ve biçimi paylaşan görüntüleri birleştirmeye genişletmişlerdir. Her parmak izi görüntüsünün gereksiz ayrıntı noktaları dağılımını içeren benzersiz birer içeriği olduğunu vurgulayan Kumar ve Vikram, [16] bu içerik ile parmak izi eşlemeleri yapmışlardır. Görüntülerin işlemler öncesi iyileştirilmesi ve inceltilmiş ikili parmak izi görüntülerinin elde edilmesi sonrasında, çok boyutlu YSA kullanarak görüntü eşleme gerçekleştirmişlerdir.…”
Section: Literatür öZetiunclassified