Li7La3Zr2O12 (LLZO)
garnets are among the most promising solid electrolytes for next-generation
all-solid-state Li-ion battery applications due to their high stabilities
and ionic conductivities. To help determine the influence of different
supervalent dopants on the crystal structure and site preferences,
we combine solid-state 17O, 27Al, and 71Ga magic angle spinning (MAS) NMR spectroscopy and density-functional
theory (DFT) calculations. DFT-based defect configuration analysis
for the undoped and Al and/or Ga-doped LLZO variants uncovers an interplay
between the local network of atoms and the observed NMR signals. Specifically,
the two characteristic features observed in both 27Al and 71Ga NMR spectra result from both the deviations in the polyhedral
coordination/site-symmetry within the 4-fold coordinated Li1/24d sites
(rather than the doping of the other Li2/96h or La sites) and with
the number of occupied adjacent Li2 sites that share oxygen atoms
with these dopant sites. The sharp 27Al and 71Ga resonances arise from dopants located at a highly symmetric tetrahedral
24d site with four corner-sharing LiO4 neighbors, whereas
the broader features originate from highly distorted dopant sites
with fewer or no immediate LiO4 neighbors. A correlation
between the size of the 27Al/71Ga quadrupolar
coupling and the distortion of the doping sites (viz. XO4/XO5/XO6 with X = {Al/Ga}) is established. 17O MAS NMR spectra for these systems provide insights into
the oxygen connectivity network: 17O signals originating
from the dopant-coordinating oxygens are resolved and used for further
characterization of the microenvironments at the dopant and other
sites.