The assessment of the fingerprint PADs embedded into a comparison system represents an emerging topic in biometric recognition. Providing models and methods for this aim helps scientists, technologists, and companies to simulate multiple scenarios and have a realistic view of the process's consequences on the recognition system. The most recent models aimed at deriving the overall system performance, especially in the sequential assessment of the fingerprint liveness and comparison pointed out a significant decrease in Genuine Acceptance Rate (GAR). In particular, our previous studies showed that PAD contributes predominantly to this drop, regardless of the comparison system used. This paper's goal is to establish a systematic approach for the "trade-off" computation between the gain in Impostor Attack Presentation Accept Rate (IAPAR) and the loss in GAR mentioned above. We propose a formal "trade-off" definition to measure the balance between tackling presentation attacks and the performance drop on genuine users. Experimental simulations and theoretical expectations confirm that an appropriate "trade-off" definition allows a complete view of the sequential embedding potentials.