Livestock excrement is composted and applied to agricultural soils. If composts contain antimicrobial-resistant bacteria (ARB), they may spread to the soil and contaminate cultivated crops. Therefore, we investigated the degree of transmission of ARB and related antimicrobial resistance genes (ARGs) and, as well as clonal transmission of ARB from livestock to soil and crops through composting. This study was conducted at Rakuno Gakuen University farm in Hokkaido, Japan. Samples of cattle feces, solid and liquid composts, agricultural soil, and crops were collected. The abundance of Escherichia coli, coliforms, β-lactam-resistant E. coli, and β-lactam-resistant coliforms, as well as the copy numbers of ARG (specifically the bla gene related to β-lactam-resistant bacteria), were assessed using qPCR through colony counts on CHROMagar ECC with or without ampicillin, respectively, 160 days after compost application. After the application of the compost to the soil, there was an initial increase in E. coli and coliform numbers, followed by a subsequent decrease over time. This trend was also observed in the copy numbers of the bla gene. In the soil, 5.0 CFU g-1 E. coli was detected on day 0 (the day post-compost application), and then, E. coli was not quantified on 60 days post-application. Through phylogenetic analysis involving single nucleotide polymorphisms (SNPs) and using whole-genome sequencing, it was discovered that clonal blaCTX-M-positive E. coli and blaTEM-positive Escherichia fergusonii were present in cattle feces, liquid compost, and soil on day 0 as well as 7 days post-application. This showed that livestock-derived ARB were transmitted from compost to soil and persisted for at least 7 days in soil. These findings indicate a potential low-level transmission of livestock-associated bacteria to agricultural soil through composts was observed at low frequency, dissemination was detected. Therefore, decreasing ARB abundance during composting is important for public health.