2018
DOI: 10.1142/s0219498818501219
|View full text |Cite
|
Sign up to set email alerts
|

Finite commutative ring with genus two essential graph

Abstract: Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 10 publications
0
0
0
Order By: Relevance