1984
DOI: 10.1007/bf00271645
|View full text |Cite
|
Sign up to set email alerts
|

Finite complete rewriting systems and the complexity of the word problem

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
37
0

Year Published

1993
1993
2017
2017

Publication Types

Select...
8
1

Relationship

1
8

Authors

Journals

citations
Cited by 55 publications
(37 citation statements)
references
References 12 publications
0
37
0
Order By: Relevance
“…On the other hand, this algorithm does not yield any upper bound on the computational complexity of the word problem [5]. Complexity results on word problems for restricted classes of finitely presented monoids can be found for instance in [10,41,42].…”
Section: Complexity Theorymentioning
confidence: 96%
See 1 more Smart Citation
“…On the other hand, this algorithm does not yield any upper bound on the computational complexity of the word problem [5]. Complexity results on word problems for restricted classes of finitely presented monoids can be found for instance in [10,41,42].…”
Section: Complexity Theorymentioning
confidence: 96%
“…final) state, and δ : Q \ {q f } × Σ → Q × Σ × {left, right} is the transition function) such that the question whether a word w ∈ Σ * is accepted by A is PSPACE-complete. Such a linear bounded automaton exists, see, e.g., [5]. The one-step transition relation between configurations of A is denoted by ⇒ A .…”
Section: Compressed Word Problems In Pspacementioning
confidence: 99%
“…For term rewriting, both confluence [3] and termination [27] are, in general, undecidable. However, for systems known to be terminating, confluence is decidable.…”
Section: Introductionmentioning
confidence: 99%
“…Despite this result, there are plenty of rewriting systems with a decidable word problem, the most famous class being that of confluent and terminating systems [32]. In general, also confluence and termination are undecidable properties of a semi-Thue system, see [28] for termination and [1] for confluence. A large amount of research tries to identify sufficient conditions for confluence/termination of rewriting systems (cf.…”
Section: Introductionmentioning
confidence: 99%