S U M M A R YThe finite cube elements method (FCEM) is a numerical tool designed for modelling gravity anomalies and estimating structural index (SI) of solid and fractal bodies with defined boundaries, tilted or in normal position and with variable density contrast. In this work, we apply FCEM to modelling magnetic anomalies and estimating SI of bodies with non-uniform magnetization having variable magnitude and direction.In magnetics as in gravity, FCEM allows us to study the spatial distribution of SI of the modelled bodies on contour maps and profiles. We believe that this will impact the forward and inverse modelling of potential field data, especially Euler deconvolution.As far as the author knows, this is the first time that gravity and magnetic anomalies, as well as SI, of self similar fractal bodies such as Menger sponges and Sierpinsky triangles are calculated using FCEM. The SI patterns derived from different order sponges and triangles are perfectly overlapped. This is true for bodies having variable property distributions (susceptibility or density contrast) under different field conditions (in case of magnetics) regardless of their orientation and depth of burial. We therefore propose SI as a new universal fractal-orderinvariant measure which can be used in addition to the fractal dimensions for formulating potential field theory of fractal objects.