2020
DOI: 10.58997/ejde.2020.90
|View full text |Cite
|
Sign up to set email alerts
|

Finite cyclicity of the contact point in slow-fast integrable systems of Darboux type

Renato Huzak

Abstract: Using singular perturbation theory and family blow-up we prove that nilpotent contact points in deformations of slow-fast Darboux integrable systems have finite cyclicity. The deformations are smooth or analytic depending on the region in the parameter space. This article is a natural continuation of [1,3], where one studies limit cycles in polynomial deformations of slow-fast Darboux integrable systems, around the ``integrable" direction in the parameter space. We extend the existing finite cyclicity result o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 22 publications
0
0
0
Order By: Relevance