The paper presents a detailed description of duality for braided algebras, coalgebras, bialgebras, Hopf algebras, and their modules and comodules in the infinite setting. Assuming that the dual objects exist, it is shown how a given braiding induces compatible braidings for the dual objects, and how actions (resp., coactions) can be turned into coactions (resp., actions) of the dual coalgebra (resp., algebra), with an emphasis on braided bialgebras and their braided (co)module algebras. Examples are provided by considering these structures in a graded (or filtered) setting, where each degree is finite-dimensional.