Abstract:GIM Lie algebras are the generalizations of Kac–Moody Lie algebras. However, the structures of GIM Lie algebras are more complex than the latter, so they have encountered many new difficulties to study their representation theory. In this paper, we classify all finite dimensional simple modules over the GIM Lie algebra Qn+1(2,1) as well as those over Θ2n+1.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.