Objective: Neck muscle activation plays an important role in maintaining posture and preventing trauma injuries of the head-neck system, levels of which are primarily controlled by the neural system. Thus, the present study aims to establish and validate a neuromuscular headneck model as well as to investigate the effects of realistic neural reflex control on head-neck behaviors during impact loading. Methods: The neuromuscular head-neck model was first established based on a musculoskeletal model by including neural reflex control of the vestibular system and proprioceptors. Then, a series of human posture control experiments was implemented and used to validate the model concerning both joint kinematics of the cervical spine and neck muscle activations. Finally, frontal impact experiments of varying loading severities were simulated with the newly established model and compared with an original model to investigate the influences of the implanted neural reflex controllers on head-neck kinematic responses. Results: The simulation results using the present neuromuscular model showed good correlations with in-vivo experimental data while the original model even cannot reach a correct balance status. Furthermore, the vestibular reflex is noted to dominate the muscle activation in less severe impact loadings while both vestibular and proprioceptive controllers have a lot of effect in higher impact loading severity cases. Conclusions: In summary, a novel neuromuscular head-model was established and its application demonstrated the significance of the neural reflex control in predicting in vivo head-neck responses and preventing related injury risk due to impact loading.