Citation: Vo, Thuc and Thai, Huu-Tai (2012) Static behavior of composite beams using various refined shear deformation theories. Composite Structures, 94 (8) Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Static behaviour of composite beams using various refined shear deformation theories
AbstractStatic behaviour of composite beams with arbitrary lay-ups using various refined shear deformation theories is presented. The developed theories, which do not require shear correction factor, account for parabolical variation of shear strains and consequently shear stresses through the depth of the beam. In addition, they have strong similarity with Euler-Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. A two-noded C 1 finite element with six degree-of-freedom per node which accounts for shear deformation effects and all coupling coming from the material anisotropy is developed to solve the problem. Numerical results are performed for symmetric and anti-symmetric cross-ply composite beams under the uniformly distributed load and concentrated load. The effects of fiber angle and lay-ups on the shear deformation parameter and extension-bending-shear-torsion response are investigated.