Aim: Evaluate the influence of the cervical margin relocation (CMR) on stress distribution in the lower first molar restored with direct nano-ceramic composite (zenit). Methods: A 3D model of the lower first molar was modeled and used. Standardized mesio-occluso-distal (MOD) preparation consisted in two models used in this study with mesial subgingival margin in model II. (CMR) was applied in model II using flowable composite or resin glass ionomer (Riva). Both models were restored with nanoceramic composite and then subjected to six runs (2 for the model I and 4 for model II) with load (100N) as two load cases, one at (11º) and other at (45º) from the vertical axis. The stress distributions (FEA) in the final restoration and (CMR) material were analyzed using 3D models. Results: The two models recorded an equivalent Von Mises stress and Total deformation in the final restoration, regardless of the difference in the oblique angle incidence from (11º to 45º) or the type of the material used for (CMR) there was no significant difference in the (FEA) between the model with CMR (model II) and the model without CMR (model I). Conclusions: (CMR) technique seems to be biomechanically beneficial with high eccentric applied stress, (CMR) with resin glass ionomer or flowable composite resin in combination with nanoceramic composite improved the biomechanical behavior of (MOD) cavities extended below cement enamel junction (CMR) with high modulus elasticity material like (Riva) exhibits a more uniform stress distribution.