2016
DOI: 10.1016/j.cam.2015.07.026
|View full text |Cite
|
Sign up to set email alerts
|

Finite element approximation of fractional order elliptic boundary value problems

Abstract: A finite element numerical method is investigated for fractional order elliptic boundary value problems with homogeneous Dirichlet type boundary conditions. It is pointed out that an appropriate stiffness matrix can be obtained by taking the prescribed fractional power of the stiffness matrix corresponding to the non-fractional elliptic operators.It is proved that this approach, which is also called the matrix transformation or matrix transfer method, delivers optimal rate of convergence in the L 2 -norm.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 12 publications
(8 citation statements)
references
References 37 publications
0
5
0
2
Order By: Relevance
“…Attekintjük a különböző modellekhez tartozó numerikus módszereket. Az első hatékony eljárást a [12] munkában közölték, amelynek alapgondolata, hogy el kell tolni a véges differenciában szereplő együtthatókat valamilyen p ∈ Z + paraméterrel: [12]és [17], a másodikéhoz a [14]és [15] munkákat idézzük.…”
Section: A Modellek Vizsgálataunclassified
“…Attekintjük a különböző modellekhez tartozó numerikus módszereket. Az első hatékony eljárást a [12] munkában közölték, amelynek alapgondolata, hogy el kell tolni a véges differenciában szereplő együtthatókat valamilyen p ∈ Z + paraméterrel: [12]és [17], a másodikéhoz a [14]és [15] munkákat idézzük.…”
Section: A Modellek Vizsgálataunclassified
“…The use of finite element approximations for fractional power elliptic operators is discussed in detail, for instance, in the works Acosta and Borthagaray (2017); Szekeres and Izsák (2016).…”
Section: Problem Formulationmentioning
confidence: 99%
“…For approximation in space, we can apply finite volume or finite element methods oriented to using arbitrary domains and irregular computational grids (Knabner and Angermann (2003); Quarteroni and Valli (1994)). After this, we formulate the corresponding Cauchy problem with a fractional power of a self-adjoint positive definite discrete elliptic operator (see Bonito and Pasciak (2015); Szekeres and Izsák (2016)) -a fractional power of a symmetric positive definite matrix (Higham (2008)).…”
Section: Introductionmentioning
confidence: 99%
“…In the past few decades, boundary value problems of fractional order involving a variety of boundary conditions have been studied by several researchers. We refer the readers to [9][10][11][12][13][14][15] and the references cited therein. Moreover,the existence of solutions to the fractional differential equations with anti-periodic boundary value conditions has been studied by many authors (see [16][17][18][19][20][21]).…”
Section: Introductionmentioning
confidence: 99%