Fully implicit schemes with second‐order time evolutions have been applied to simulate nonlinear diffusion problems precisely for a long time, but there is seldom theoretical study for either their convergence properties or efficient iterations. Here, a second‐order time evolution fully implicit scheme for two‐dimensional nonlinear divergence diffusion problem is analyzed. The unique existence of its solution is given. Two new methods are provided to prove its
L
∞
(
H
1
)
convergence, including entire inductive hypothesis reasoning and a two‐step reasoning process. Rigorous analysis shows the scheme is stable; its solution has second‐order convergence in both space and time to the exact solution of the problem. The convergence is applied to analyze a Newton iteration accelerating the computation and show its quadratic convergent speed and second‐order accuracy. The reasoning techniques also adapt to first‐order time accuracy schemes, and can be extended to analyze a wide class of nonlinear schemes for nonlinear problems. Numerical tests highlight the theoretical results and demonstrate the high performance of the algorithms. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 121–140, 2016