2015
DOI: 10.1016/j.apnum.2014.02.009
|View full text |Cite
|
Sign up to set email alerts
|

Finite element approximation with numerical integration for differential eigenvalue problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

3
4
0
4

Year Published

2017
2017
2020
2020

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 30 publications
(11 citation statements)
references
References 18 publications
3
4
0
4
Order By: Relevance
“…Then the error estimates of Theorem 3 are proved with using results from [19][20][21][22][23]. This completes the proof of the theorem.…”
Section: Variational Statement Of the Problemsupporting
confidence: 48%
See 1 more Smart Citation
“…Then the error estimates of Theorem 3 are proved with using results from [19][20][21][22][23]. This completes the proof of the theorem.…”
Section: Variational Statement Of the Problemsupporting
confidence: 48%
“…Mesh methods for solving differential nonlinear eigenvalue problems were studied in [14][15][16]. The theoretical basis for the study of nonlinear eigenvalue problems is results obtained for linear eigenvalues problems [17][18][19][20][21][22][23]. In the papers [24][25][26][27][28][29][30], numerical methods for solving applied nonlinear boundary value problems and variational inequalities have been studied.…”
Section: Introductionmentioning
confidence: 99%
“…Эта задача будет использована в дальнейшем для исследования форм потери устойчивости пластины и нахождения критической нагрузки, при которой наступает потеря устойчивости оболочки.. Будут разработаны приближенные методы решения указанной задачи на основе разработанных в [55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70] подходов. При этом для нахождения критических нагрузок будут использованы спектральные задачи с нелинейным вхождением параметра [71][72][73][74][75][76], а также методы исследования форм потери устойчивости многослойных конструкций. [77,78].…”
Section: заключениеunclassified
“…The error of the finite difference method for solving differential eigenvalue problems with nonlinear dependence on the spectral parameter was investigated in [1,15]. For nonlinear differential spectral problems, the finite element method was studied in [16][17][18][19] based on the use general results in the linear case [20][21][22][23]. Approximate methods for solving applied nonlinear boundary value problems and variational inequalities have been investigated in the papers [24][25][26][27][28][29][30].…”
Section: Introductionmentioning
confidence: 99%