Lithium-ion power batteries have become integral to the advancement of new energy vehicles. However, their performance is notably compromised by excessive temperatures, a factor intricately linked to the batteries' electrochemical properties. To optimize lithium-ion battery pack performance, it is imperative to maintain temperatures within an appropriate range, achievable through an effective cooling system. This paper delves into the heat dissipation characteristics of lithium-ion battery packs under various parameters of liquid cooling systems, employing a synergistic analysis approach. The findings demonstrate that a liquid cooling system with an initial coolant temperature of 15℃ and a flow rate of 2L/min exhibits superior synergistic performance, effectively enhancing the cooling efficiency of the battery pack. As the charge/discharge rate increases, battery heating power escalates, resulting in a notable rise in temperature and synergy angle. Optimal cooling efficiency is achieved with three cooling channel inlets, minimizing the temperature difference across the battery pack.