In this study, aeroelastic analysis of a spherical shell subjected to external supersonic airflow is carried out. The structural model is based on a combination of the linear spherical shell theory and the classic finite element method (FEM). In this hybrid method, the nodal displacements are found from the exact solution of shell governing equations rather than approximated by polynomial functions. Therefore, the number of elements chosen is a function of the complexity of the structure. Convergence is rapid. It is not necessary to choose a large number of elements to obtain good results. Linearized first-order potential (piston) theory with the curvature correction term is coupled with the structural model to account for pressure loading. The linear mass, stiffness, and damping matrices are found using the hybrid finite element formulation. Aeroelastic equations are numerically derived and solved. The results are validated using the numerical and theoretical data available in literature. The analysis is accomplished for spherical shells with different boundary conditions, geometries, flow parameters, and radius to thickness ratios. the results show that the spherical shell loses its stability through coupled-mode flutter. This proposed hybrid FEM can be used efficiently for the design and analysis of spherical shells employed in high speed aircraft structures.