Due to the complicated tooth geometry of worm gears, their design to achieve high capacity and favourable performance is a tedious task, and the optimum design is hardly to obtain. In order to overcome this problem, the authors developed an integrated approach which consists of three modules: numerical analysis, three-dimensional simulation and finite element analysis. It provides a powerful tool for optimum design of worm gears and is a general approach applicable for various types of worm gears. As case studies, two designs using the approach have been conducted, one for cylindrical involute worm gearing and the other for double enveloping worm gearing.