Non-destructive testing techniques are widely applied in industry for the evaluation of quantities of interest without inflicting additional damage accumulation. Crack detection and monitoring is a prime example of where non-destructive testing is valuable. Among the variety of non-destructive testing techniques, the direct current and alternating current potential difference methods, which are based on the principle that an electrical potential field around a conductive specimen is disturbed by the presence of geometric irregularities (or "features"), have received a great deal of attention in the literature. This is mainly due to the high levels of accuracy associated with these techniques and good estimations of crack initiation and propagation having been achieved.A critical review of the evolution and applications of potential difference methods is presented in this paper. Potential difference methods are capable of providing accurate and continuous measurements with simple installation and exclude the requirement of visual access under harsh service conditions. Alternating current potential difference methods require lower current input than direct current equivalents and hence provide higher sensitivity and offer better noise rejection but are vulnerable to capacitance effects and are more expensive. Calibration curves can be determined analytically, numerically, or by direct or analogue experimental techniques with each method offering strengths and limitations. Application of these should be determined in accordance with the specific scenario. The performance of electric probes (of voltage measurements and current injection) on topand side-face of C(T) and SEN(B) specimens are reviewed in detail as case examples. Specific guidance in normalising measurements and eliminating errors from thermoelectric effects can be implemented in order to improve the accuracy of PD methods. Abundant results have been obtained by applying PD methods in monitoring cracks geometries under aggressive conditions such as corrosion, high temperature, creep and cycled loading.