The Extended Finite Element Method is a numerical solution based on the Finite Element Method (FEM) XFEM has really become a very important generalization of classical finite element techniques, by establishing a mesh independent generalization of classical finite elements to reduce the mesh-dependent shortcomings of the solution. The application of XFEM in crack simulation should improve the modeling of the crack tip environment and also apply to generalized advanced global failure criteria, which is specifically designed to deal with problems in the engineering field Such as the fracture behaviour model. The purpose of this paper is to identify the application of the Extended Finite Element Method to a technical problem, namely fracture behaviour model. The media used is pure boneless concrete modelled with COMSOL Multiphysics 5.6 software by combining stress ratio, lateral strain due to axial loading, concrete density, and crack growth rate. The crack growth process provides initial prolonged growth along with the increase in crack size. In the end, the growth is faster. The reason for this accelerated growth is the stress intensity factor at the crack tip. As the crack grows, the stress intensity factor increases, leading to faster growth. The crack grows until it reaches a critical value, and fracture occurs. The test results obtained the cause of failure: the critical stress intensity is exceeded. See a comparison of crack size and stress cycle as the crack size increases. This accelerated growth is because the growth rate depends on the stress intensity factor at the crack tip, and the stress intensity factor depends on the crack size. As the crack grows, the stress intensity factor increases, leading to faster growth. The crack grows to a critical size, and failure occurs. The results show a relatively strong relationship between increasing crack size and increasing crack growth rate.