2021
DOI: 10.1177/0193841x211065619
|View full text |Cite
|
Sign up to set email alerts
|

Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches

Abstract: Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters. Objectives The purpose of this article is to evaluate and compare different cluster enumeration techniques. Research Design Study I … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 54 publications
0
0
0
Order By: Relevance