2014
DOI: 10.1007/s10946-014-9444-1
|View full text |Cite
|
Sign up to set email alerts
|

Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States

Abstract: We discuss the Wigner functions and tomographic probability distributions of two-qubit states. We give the kernel of the map, which provides the expression of the state tomogram in terms of the Wigner function of the two-qubit state, in an explicit form. Also we obtain the kernel of the inverse map and elucidate the connection of the constructed maps with the star-product scheme of quantization.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0
4

Year Published

2016
2016
2020
2020

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 18 publications
(16 citation statements)
references
References 24 publications
0
12
0
4
Order By: Relevance
“…In [54,55] the following self-dual minimal system of dequantizers are considered for deriving a discrete Wigner function…”
Section: Self-dual Systemsmentioning
confidence: 99%
See 1 more Smart Citation
“…In [54,55] the following self-dual minimal system of dequantizers are considered for deriving a discrete Wigner function…”
Section: Self-dual Systemsmentioning
confidence: 99%
“…The star product formalism of symbols for N-dimensional systems is described in detail in [53]. Using this formalism the relations between tomograms and Wigner functions for one and two qubits have been determined [53][54][55].…”
Section: Introductionmentioning
confidence: 99%
“…Various two-qubit tomography schemes have been proposed in the recent past [61][62][63][64][65]. Specifically, the tomogram for two spin-1 2 (qubit) states can be obtained using the star product scheme [61,62].…”
Section: Tomogram Of Two Spin-1 2 (Qubit) Statesmentioning
confidence: 99%
“…Аналогичную связь можно установить и между функциями Вигнера (33) и томографическими символами (56), которые отвечают операторам Паули (31). Убедимся, что томографические деквантайзеры (41), (42) и квантайзеры (43), (44) не удовлетворяют соотношению (8), но удовлетворяют соотношению (7). Для этого сначала вычислим след произведения деквантайзера на квантайзер:…”
Section: томографические деквантайзеры квантайзеры и отвечающие им сunclassified
“…Найдем явный вид ядра (16), определяющего звездочное произведение томографических символов операторов. Его компоненты, вычисленные с помощью деквантайзеров (41), (42) и квантайзеров (43), (44), определяются с помощью соотношения…”
Section: томографические деквантайзеры квантайзеры и отвечающие им сunclassified