Nowadays, the increasing number of non-linear loads influences the grid, causing grid voltage disturbances. These disturbances may be very dangerous for the equipment and can create faults in converter behaviour. However, the right control algorithm can improve the reliability of the work. For a current source rectifier, the finite control set model predictive control has been proposed. This method is very flexible because of the variety of the possible cost function forms. It has been examined under grid voltage disturbed by the higher harmonics and the voltage drop. Simulation results prove the ability to damp the distortions and to ensure the unity power factor. Summing up, the algorithm is a very good solution for use in applications such as battery charging, active power filtering and low-voltage direct current load feeding.