1966
DOI: 10.1017/s1446788700004936
|View full text |Cite
|
Sign up to set email alerts
|

Finite simple groups with nilpotent third maximal subgroups

Abstract: We say that a subgroup H is an w-th maximal subgroup of G if there exists a chain of subgroups REMARK. If the group PSL(2, q) satisfies the condition that all third maximal subgroups are nilpotent then it follows that (a) q = 2 r , 3* or t, where r, s, t are primes, r > 2, and (b) if q -3 r or 2 s , then {q+l)je, {q-l)/e, where e = 2 if q is odd, and e = 1 if q is even, are products of at most two (not necessarily distinct) primes; if q = t, then (t-1)/2 is a product of at most two primes and (i+l)/2 is either… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

1973
1973
2014
2014

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 2 publications
0
3
0
1
Order By: Relevance
“…Since P 1 ∩ P 2 = 1 and both P 1 and P 2 are minimal normal subgroups of G, it follows that G is a subdirect product of two isomorphic distinct Schmidt groups. Therefore, G is a group of type II (7).…”
Section: Assume First That G = [P ]Q Is a Schmidt Groupmentioning
confidence: 99%
See 1 more Smart Citation
“…Since P 1 ∩ P 2 = 1 and both P 1 and P 2 are minimal normal subgroups of G, it follows that G is a subdirect product of two isomorphic distinct Schmidt groups. Therefore, G is a group of type II (7).…”
Section: Assume First That G = [P ]Q Is a Schmidt Groupmentioning
confidence: 99%
“…Semenchuk developed [6] these results by giving a description of the soluble groups all whose 2-maximal subgroups are supersoluble. Gagen and Janko described [7] the simple groups whose 3-maximal subgroups are nilpotent. Agrawal proved [8] that a group G is supersoluble whenever all its 2-maximal subgroups are permutable with all Sylow subgroups of G. Polyakov also developed [9] the above-cited results of Huppert by proving that a group is supersoluble whenever all its 2-maximal subgroups are permutable with all its maximal subgroups.…”
Section: Introductionmentioning
confidence: 99%
“…A description of nonsoluble groups with all 2-maximal subgroups nilpotent was obtained by M. Suzuki [6] and Z. Janko [7]. In [8], T.M. Gagen and Z. Janko gave a description of simple groups whose 3maximal subgroups are nilpotent.…”
Section: Introductionmentioning
confidence: 99%
“…Эти результаты получили развитие в работе Се-менчука [6], где дано описание разрешимых групп, у которых все их 2-максимальные подгруппы сверхразрешимы. Гаген и Янко в работе [7] описали простые группы, чьи 3-максимальные подгруппы являются нильпотентными. Агроваль [8] доказал, что группа G является сверхразрешимой, если все ее 2-максимальные подгруппы перестановочны со всеми силовскими подгруппами группы G. Отмеченные выше результаты Хупперта получили свое дальнейшее развитие также и в работе По-лякова [9], который доказал, что группа является сверхразрешимой, если все ее c ⃝ Го Вэньбинь, Е. В. Легчекова, А. Н.…”
unclassified