2021
DOI: 10.48550/arxiv.2106.07859
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Finite State Graphon Games with Applications to Epidemics

Abstract: We consider a game for a continuum of non-identical players evolving on a finite state space. Their heterogeneous interactions are represented by a graphon, which can be viewed as the limit of a dense random graph. The player's transition rates between the states depend on their own control and the interaction strengths with the other players. We develop a rigorous mathematical framework for this game and analyze Nash equilibria. We provide a sufficient condition for a Nash equilibrium and prove existence of s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 41 publications
0
1
0
Order By: Relevance
“…There have since been efforts to control cooperative graphon mean field systems with diffusive linear dynamics using spectral methods (Gao & Caines, 2019a;b). On the other hand, Bayraktar et al (2020); Bet et al (2020) consider large non-clustered systems in a continuous-time diffusion-type setting without control, while Aurell et al (2021b) and Aurell et al (2021a) consider continuous-time linear-quadratic systems and continuous-time jump processes respectively. To the best of our knowledge, only Vasal et al (2021) have considered solving and formulating a graphon mean field game in discrete time, though requiring analytic computation of an infinite-dimensional value function defined over all mean fields and thus being inapplicable to arbitrary problems in a black-box, learning manner.…”
Section: Introductionmentioning
confidence: 99%
“…There have since been efforts to control cooperative graphon mean field systems with diffusive linear dynamics using spectral methods (Gao & Caines, 2019a;b). On the other hand, Bayraktar et al (2020); Bet et al (2020) consider large non-clustered systems in a continuous-time diffusion-type setting without control, while Aurell et al (2021b) and Aurell et al (2021a) consider continuous-time linear-quadratic systems and continuous-time jump processes respectively. To the best of our knowledge, only Vasal et al (2021) have considered solving and formulating a graphon mean field game in discrete time, though requiring analytic computation of an infinite-dimensional value function defined over all mean fields and thus being inapplicable to arbitrary problems in a black-box, learning manner.…”
Section: Introductionmentioning
confidence: 99%