Using digital image correlation, we track the displacement fluctuations within a persistent shear band in a dense sand specimen bounded by glass walls undergoing plane strain compression. The data evidences a clear, systematic, temporally recurring pattern of vortex formation, dissolution, and reformation throughout macroscopic softening and critical state regimes. During softening, locally affine deformation zones are observed at various locations along the shear band, which we argue to be kinematic signatures of semi-stable force chains. Force chain collapse then occurs, inducing vortex formation. Local jamming at the conflux of opposing displacements between adjacent vortices arrests the vortices, providing an avenue for potential new force chains to form amidst these jammed regions. The process repeats itself temporally throughout the critical state. The pattern further correlates with fluctuations in macroscopic shear stress. We characterize the nature of the observed vortices, as they are different in our sands comprised of irregular shaped particles, as compared to previous observations from experiments and numerical simulations which involved circular or rounded particles. The results provide an interesting benchmark for behavior of non-circular/non-spherical particles undergoing shear.