Rock-like materials like ceramic refractories, in working conditions may be subject to large temperature variations. To simulate practical applications, bespoke constituive modelling is required. In this work a general, thermodynamically consistent framework, able to incorporate key micromechanical features of the material behaviour, and applicable to a wide range of geomaterials, is formulated and validated. Dierent thermodynamic potentials are proposed to deal with both reversibility and irreversibility. A key advantage of this approach is the ability to freely choose the thermal dependency interpolation functions. Extensive model validation is provided by correctly reproducing both reversible and irreversible experimental trends of dierent materials under dierent loading conditions. It is found that even for simple materials, if a sample is subject to a large stress level, its thermal and mechanical responses become unexpectedly coupled. The proposed modelling framework is not limited to refractories and can be easily adapted to dierent types of rock-like materials.