We consider composite bosons (cobosons) comprised two elementary particles, fermions or bosons, in an entangled state. First, we show that the effective number of cobosons implies the level of correlation between the two constituent particles. For the maximum level of correlation, the effective number of cobosons is the same as the total number of cobosons, which can exhibit the original BoseEinstein condensation (BEC). In this context, we study a model of BEC for indistinguishable cobosons with a controllable parameter, i.e., entanglement between the two constituent particles. We find that bi-fermions behave in a predictable way, i.e., the effective number of the ground state coboson is an increasing function of entanglement between a pair of constituent fermions. Interestingly, bi-bosons exhibit the opposite behavior-the effective number of the ground state coboson is a decreasing function of entanglement between a pair of constituent bosons.