A three-dimensional (3D) point cloud registration based on entropy and particle swarm algorithm (EPSA) is proposed in the paper. The algorithm can effectively suppress noise and improve registration accuracy. Firstly, in order to find the knearest neighbor of point, the relationship of points is established by k-d tree. The noise is suppressed by the mean of neighbor points. Secondly, the gravity center of two point clouds is calculated to find the translation matrix T. Thirdly, the rotation matrix R is gotten through particle swarm optimization (PSO). While performing the PSO, the entropy information is selected as the fitness function. Lastly, the experiment results are presented. They demonstrate that the algorithm is valuable and robust. It can effectively improve the accuracy of rigid registration.