In this paper, we present the problem of stability, finite-time stability and passivity for discrete-time neural networks (DNNs) with variable delays. For the purposes of stability analysis, an augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two non-equidistant subintervals. Then, by using the Wirtinger-based inequality, reciprocally and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of LKF are given. In order to relax the existing results, several zero equalities are introduced and stability criteria are proposed in terms of linear matrix inequalities (LMIs). The main objective for the finite-time stability and passivity analysis is how to effectively evaluate the finite-time passivity conditions for DNNs. To achieve this, some weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of LKF, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. Some numerical examples are presented to illustrate the proposed methodology.