This paper studies the asymptotic stability of fractional-order neural networks (FONNs) with time delay utilizing a sampled-data controller. Firstly, a novel class of Lyapunov–Krasovskii functions (LKFs) is established, in which time delay and fractional-order information are fully taken into account. Secondly, by combining with the fractional-order Leibniz–Newton formula, LKFs, and other analysis techniques, some less conservative stability criteria that depend on time delay and fractional-order information are given in terms of linear matrix inequalities (LMIs). In the meantime, the sampled-data controller gain is developed under a larger sampling interval. Last, the proposed criteria are shown to be valid and less conservative than the existing ones using three numerical examples.