The numerical investigation of the natural convection in concave and convex parabolic enclosures with a nanofluid consisting of water and copper nanoparticles is carried out by using the finite volume method. The upper and lower walls of the enclosures are adiabatic while the sidewalls are isothermal at a cold temperature. An internal heat source of constant length (ε = 0.2) and negligible thickness is placed at various vertical positions along the center of the enclosure. It was found that the increase in the location of the heat source leads to a drop in the water and nanofluid flow circulation in both types of enclosures.
For both considered Cases I and II, the average Nusselt number increases when the Rayleigh number and solid volume fraction increase. Moreover, it was concluded that Case I with δ = 0.8 is the optimum case for heat transfer enhancement for Ra = 103 and Ra = 104. Case II with δ = 0.5 is optimum for Ra = 105. Both cases are satisfied when the nanofluid is used with ϕ = 0.2.