Finer strategies of spacecraft fire mitigation require more experimental data related to fire detection. Fire detection systems developed on Earth rely massively on the optical detection of soot particles, which are present in the smoke. To detect the fire correctly, it is thus important to know how the optical properties of these particles are affected in reduced gravity. With different transport processes and increased residence time, soot in reduced gravity can be different from those produced at normal gravity. As their optical properties are related to their morphological properties, a better understanding about the evolution of soot particle morphology in flames under microgravity conditions is required. Within this context, a novel technique of soot sampling using electric field is applied to a spreading non-premixed flame at normal