2021
DOI: 10.48550/arxiv.2110.13195
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Firm non-expansive mappings in weak metric spaces

Abstract: We introduce the notion of firm non-expansive mapping in weak metric spaces, extending previous work for Banach spaces and certain geodesic spaces. We prove that, for firm non-expansive mappings, the minimal displacement, the linear rate of escape, and the asymptotic step size are all equal. This generalises a theorem by Reich and Shafrir.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?