The many physiologic roles of human alpha-fetoprotein (HAFP) and its correlation with perinatal distress/pregnancy outcome are rarely addressed together in the biomedical literature, even though HAFP has long been used as a biomarker for fetal birth defects. Although the well being of the fetus can be monitored by the measurement of gestational age-dependent HAFP in biologic fluid levels (serum, amniotic fluid, urine, and vaginal fluids) throughout pregnancy, the majority of clinical reports reflect largely second trimester and (less likely) first trimester testing due to regulatory clinical restrictions. However, reports of third-trimester and pregnancy term measurement of HAFP levels performed in clinical research and/or investigational settings have gradually increased over the years and have expanded our base knowledge of AFP-associated pregnancy disorders during these stages. The different structural forms of HAFP (isoforms, epitopes, molecular variants, etc.) detected in the various biologic fluid compartments have been limited by antibody recognition of specific epitopic sites developed by the kit manufacturers based on antibody specificity, sensitivity, and precision. Concomitantly, the advances in elucidating the various biologic actions of AFP are opening new vistas toward understanding the physiologic roles of AFP during pregnancy. The present review surveys HAFP as a biomarker for fetal distress during the perinatal period in view of its structural and functional properties. An attempt is then made to relate the AFP fluid levels to adverse pregnancy complications and outcomes. Hence, the present review was divided into two major sections: (I) AFP structure and function considerations and (II) the relationship of AFP levels to the distressed fetus during the third trimester and at term.