“…For example, the decay of 125 I has been shown to lead to the deposition of a very high dose (≈10 9 cGy/decaying atom) in the immediate vicinity (≈2 nm 3 ) of the decay site and a sharp and significant drop in the energy deposited (from ≈10 9 to ≈10 6 cGy) as a function of increasing distance (few nanometres) from the decaying 125 I atom (Kassis, 2011). For example, when 125 I is localized within the cytoplasm, the survival curve is of the low LET type and the number of decays needed to reduce survival is ≈80 times that of DNA-incorporated 125 I (Kassis, 2011 (Abbasi, 2012(Abbasi, , 2011Argyrou et al, 2013a;Bączyk, 2011;Bryan et al, 2009;Chakraborty et al, 2008;Daha et al, 2010;Das et al, 2009;Harrison et al, 2013;Lewington, 2005;Máthé et al, 2010;Neves et al, 2005;Nilsson et al, 2013bNilsson et al, , 2007Nilsson et al, , 2005aNilsson et al, , 2005bPandit-Taskar et al, 2014;Ramdahl et al, 2013;Sartor, 2004;Simón et al, 2012;Sivaprasad and Rajagopal, 2012;Tomblyn, 2012;Vigna et al, 2011;Volkert and Hoffman, 1999;Wang et al, 2011). Despite the growing number of radionuclides investigated for treatment of bone metastases, the use of 89 Sr and 153 Sm still accounts for the bulk of radiopharmaceutical bonetargeted therapeutics in the clinical context and the majority of the review articles available in the literature focus on those two radionuclides.…”