We calculate the mobility of negative ions in superfluid 3He-B. We first derive the general formula for the mobility, and show that to a good approximation the scattering of quasiparticles from an ion may be treated as elastic, both in the superfluid for temperatures not too far below the transition temperature and also in the normal state. The scattering cross section in the superfluid is then calculated in terms of normal state properties; as we show, it is vital to include the effects of superfluid correlations on intermediate states in the scattering process. We find that for quasiparticles near the gap edge, the quasiparticle-ion scattering amplitude has a resonant behavior, and that as a result of interference among many partial waves, the differential scattering cross section is strongly peaked in the forward direction and reduced at larger angles, in much the same way as in diffraction. The transport cross section for such a quasiparticle is strongly reduced compared to that for a normal state quasiparticle, and the mobility is consequently strongly enhanced. Detailed calculations of the mobility which contain essentially no free parameters, agree well with the experimental data.