As ageing structures and infrastructures become a global concern, structural health monitoring (SHM) is seen as a crucial tool for their cost-effective maintenance. Promising results obtained for modern and conventional constructions suggested the application of SHM to historical masonry buildings as well. However, this presents peculiar shortcomings and open challenges. One of the most relevant aspects that deserve more research is the optimisation of the sensor placement to tackle well-known issues in ambient vibration testing for such buildings. The present paper focuses on the application of optimal sensor placement (OSP) strategies for dynamic identification in historical masonry buildings. While OSP techniques have been extensively studied in various structural contexts, their application in historical masonry buildings remains relatively limited. This paper discusses the challenges and opportunities of OSP in this specific context, analysing and discussing real-world examples, as well as a numerical benchmark application to illustrate its complexities. This article aims to shed light on the progress and issues associated with OSP in masonry historical buildings, providing a detailed problem formulation, identifying ongoing challenges and presenting promising solutions for future improvements.