This paper presents the initial prototypes of solutions designed using plastic caps, seeking acoustic applications for both airborne sound insulation and the acoustic conditioning of rooms. Plastic caps are a waste product from the packaging sector and they constitute a major waste problem, given that, if they are not attached to the packaging, they get lost during the recycling cycle and end up in landfill. Finding an application for this waste that can provide acoustic improvements is a sustainable alternative. This paper shows the results of airborne sound insulation measurements obtained in a scaled transmission chamber and sound absorption measurements obtained in a scaled reverberation chamber for different combinations of single and double plastic caps and combinations with thin sheets of sustainable materials, such as jute weaving, textile waste, hemp felt and cork board. Tests have shown that obtaining sound reduction index values of up to 20 dB is possible with plastic cap configurations, or even up to 30 dB is possible at some frequencies with combinations of caps and certain eco-materials. With regard to the sound absorption coefficient tests, close to unity absorption values have been achieved with the appropriate configuration at frequencies that can also be selected. The results indicate that these panels can be eco-solutions for airborne sound insulation as lightweight elements, or they can be used for the conditioning of rooms, tailoring the sound absorption maximums to the desired frequencies.